Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Food Microbiol ; 121: 104516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637078

RESUMO

Oxidation-reduction potential (ORP) is commonly used as a rapid measurement of the antimicrobial potential of free chlorine during industrial fresh produce washing. The current study tested the hypothesis that ORP can act as a "single variable" measurement of bacterial (vegetative and endospores) inactivation effectiveness with free chlorine irrespective of the water pH value. This situation has on occasion been assumed but never confirmed nor disproven. Chlorine-dosed pH 6.5 and 8.5 phosphate buffer solutions were inoculated with Escherichia coli (E. coli), Listeria innocua (L. innocua), or Bacillus subtilis (B. subtilis) endospores. ORP, free chlorine (FC), and log reduction were monitored after 5 s (for E. coli and L. innocua) and up to 30 min (for B. subtilis spores) of disinfection. Logistic and exponential models were developed to describe how bacteria reduction varied as a function of ORP at different pH levels. Validation tests were performed in phosphate buffered pH 6.5 and 8.5 cabbage wash water periodically dosed with FC, cabbage extract and a cocktail of Escherichia coli O157:H7 (E. coli O157:H7) and Listeria monocytogenes (L. monocytogenes). The built logistic and exponential models confirmed that at equal ORP values, the inactivation of the surrogate strains was not consistent across pH 6.5 and pH 8.5, with higher reductions at higher pH. This is the opposite of the well-known free chlorine-controlled bacterial inactivation, where the antibacterial effect is higher at lower pH. The validation test results indicated that in the cabbage wash water, the relationship between disinfection efficiency and ORP was consistent with the oxidant demand free systems. The study suggests that ORP cannot serve as a reliable single variable measurement to predict bacterial disinfection in buffered systems. When using ORP to monitor and control the antibacterial effectiveness of the chlorinated wash water, it is crucial to take into account (and control) the pH.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Listeria , Desinfecção/métodos , Cloro/farmacologia , Cloro/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Oxidantes , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Cloretos , Oxirredução , Água/química , Antibacterianos , Concentração de Íons de Hidrogênio , Fosfatos
2.
Int J Food Microbiol ; 415: 110655, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430686

RESUMO

Listeria monocytogenes is a foodborne pathogen that can cause deadly severe listeriosis. While systematic review and meta-analysis are powerful tools for comprehensive analysis by pooling every related study, these approaches to L.monocytogenes contamination food have yet to be studied in South Korea. We aimed to identify high-risk L.monocytogenes foods in South Korea through a prevalence survey of retail food products for the first time. A total of 13,684 samples of 59 articles were used for meta-analysis through the systematic review, and the results were synthesized using a random-effects model considering the heterogeneity. The overall pooled prevalence was 2.26 % (95 % CI: 1.44-3.52 %). Among nine food categories, meat exhibited the highest prevalence at 8.32 % (95 % CI: 4.42-12.14 %) after sample size restriction. Specifically, a post-hoc sensitivity analysis was conducted to identify the prevalence difference among subgroups and the source of heterogeneity. Intriguingly, the analysis revealed chicken as the primary contributor to the elevated prevalence of L.monocytogenes, a key factor deriving the observed heterogeneity. This study carries significant implications for public health and food safety in Korea. Furthermore, knowledge of differences in prevalence levels in various foods will be able to be used as a predictive guideline for foodborne outbreaks.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Microbiologia de Alimentos , Prevalência , Listeriose/epidemiologia , Contaminação de Alimentos/análise , República da Coreia/epidemiologia
3.
Int J Food Microbiol ; 416: 110665, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457887

RESUMO

Romaine lettuce in the U.S. is primarily grown in California or Arizona and either processed near the growing regions (source processing) or transported long distance for processing in facilities serving distant markets (forward processing). Recurring outbreaks of Escherichia coli O157:H7 implicating romaine lettuce in recent years, which sometimes exhibited patterns of case clustering in Northeast and Midwest, have raised industry concerns over the potential impact of forward processing on romaine lettuce food safety and quality. In this study, freshly harvested romaine lettuce from a commercial field destined for both forward and source processing channels was tracked from farm to processing facility in two separate trials. Whole-head romaine lettuce and packaged fresh-cut products were collected from both forward and source facilities for microbiological and product quality analyses. High-throughput amplicon sequencing targeting16S rRNA gene was performed to describe shifts in lettuce microbiota. Total aerobic bacteria and coliform counts on whole-head lettuce and on fresh-cut lettuce at different storage times were significantly (p < 0.05) higher for those from the forward processing facility than those from the source processing facility. Microbiota on whole-head lettuce and on fresh-cut lettuce showed differential shifting after lettuce being subjected to source or forward processing, and after product storage. Consistent with the length of pre-processing delays between harvest and processing, the lettuce quality scores of source-processed romaine lettuce, especially at late stages of 2-week storage, was significantly higher than of forward-processed product (p < 0.05).


Assuntos
Escherichia coli O157 , Microbiota , Microbiologia de Alimentos , Alface , Escherichia coli O157/genética , Inocuidade dos Alimentos , Contagem de Colônia Microbiana , Manipulação de Alimentos , Contaminação de Alimentos/análise
4.
Int J Food Microbiol ; 416: 110664, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38492524

RESUMO

Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.


Assuntos
Vírus da Hepatite A , Norovirus , Ostreidae , Vírus , Animais , Humanos , Vírus da Hepatite A/genética , Norovirus/genética , Frutas/química , Alface , RNA Viral/análise , Contaminação de Alimentos/análise
5.
ACS Appl Mater Interfaces ; 16(10): 12417-12427, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427325

RESUMO

Transportation-induced damage to fresh produce is a big challenge in logistics. Current acceleration and pressure sensors for collision monitoring face issues of power dependency, high cost, and environmental concerns. Here, a self-powered and environmentally friendly triboelectric sensor has been developed to monitor fruit collisions in transportation packaging. Microcrystalline cellulose/chitosan and sodium alginate films were prepared as positive and negative tribo-layers to assemble a natural polysaccharide film-based triboelectric nanogenerator (NP-TENG). The NP-TENG's electrical output was proportional to the structure parameters (contact surface roughness and separation gap of the tribo-layers) and the vibration factors (force and frequency) and exhibited excellent stability and durability (over 100,000 cycles under 13 N at 10 Hz). The high mechanical-to-electrical conversion efficiency (instantaneous areal power density of 9.6 mW/m2) and force sensitivity (2.2 V/N) enabled the NP-TENG to be a potential sensor for monitoring fresh produce collisions in packaging during logistics. Transportation simulation measurements of kiwifruits verified that the sensor's electrical outputs increased with the vibration frequency and stacking layer while varying at different packaging locations. This study suggests that the NP-TENG can effectively monitor collision damage during fruit transportation, providing new insights into developing intelligent food packaging systems to reduce postharvest supply chain losses.

6.
J Food Prot ; 87(4): 100259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447927

RESUMO

Fresh vegetables have been linked to multiple foodborne outbreaks in the U.S., with Listeria monocytogenes and Salmonella enterica identified as leading causes. Beyond raw vegetables, cooked vegetables can also pose food safety concerns due to improper cooking temperature and time combinations or postcooking contamination. Cooked vegetables, having had their native microbiota reduced through heat inactivation, might provide an environment that favors the growth of pathogens due to diminished microbial competition. While the risks associated with raw vegetables are recognized, the survival and growth of pathogens on cooked vegetables remain inadequately studied. This study investigated the growth kinetics of both L. monocytogenes and S. enterica on various cooked vegetables (carrot, corn, onions, green bell pepper, and potato). Vegetables were cooked at 177°C until the internal temperature reached 90°C and then cooled to 5°C. Cooled vegetables were inoculated with a four-strain cocktail of either L. monocytogenes or S. enterica at 3 log CFU/g, then stored at different temperatures (5, 10, or 25°C) for up to 7 days. Both pathogens survived on all vegetables when stored at 5°C. At 10°C, both pathogens proliferated on all vegetables, with the exception of L. monocytogenes on pepper. At 25°C, the highest growth rates were observed by both pathogens on carrot (5.55 ± 0.22 and 6.42 ± 0.23 log CFU/g/d for L. monocytogenes and S. enterica, respectively). S. enterica displayed higher growth rates at 25°C compared to L. monocytogenes on all vegetables. Overall, these results bridge the knowledge gap concerning the growth kinetics of both S. enterica and L. monocytogenes on various cooked vegetables, offering insights to further enhance food safety.


Assuntos
Listeria monocytogenes , Salmonella enterica , Verduras , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Culinária , Temperatura
7.
Front Plant Sci ; 15: 1302047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352648

RESUMO

Multiple Salmonella enterica serovars and strains have been reported to be able to persist inside the foliar tissue of lettuce (Lactuca sativa L.), potentially resisting washing steps and reaching the consumer. Intraspecies variation of the bacterial pathogen and of the plant host can both significantly affect the outcome of foliar colonization. However, current understanding of the mechanisms underlying this phenomenon is still very limited. In this study, we evaluated the foliar fitness of 14 genetically barcoded S. enterica isolates from 10 different serovars, collected from plant and animal sources. The S. enterica isolates were vacuum-infiltrated individually or in pools into the leaves of three- to four-week-old lettuce plants. To estimate the survival capacity of individual isolates, we enumerated the bacterial populations at 0- and 10- days post-inoculation (DPI) and calculated their net growth. The competition of isolates in the lettuce apoplast was assessed through the determination of the relative abundance change of barcode counts of each isolate within pools during the 10 DPI experimental period. Isolates exhibiting varying apoplast fitness phenotypes were used to evaluate their capacity to grow in metabolites extracted from the lettuce apoplast and to elicit the reactive oxygen species burst immune response. Our study revealed that strains of S. enterica can substantially differ in their ability to survive and compete in a co-inhabited lettuce leaf apoplast. The differential foliar fitness observed among these S. enterica isolates might be explained, in part, by their ability to utilize nutrients available in the apoplast and to evade plant immune responses in this niche.

8.
Food Res Int ; 179: 114028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342546

RESUMO

Washing and sanitation are vital steps during the postharvest processing of fresh produce to reduce the microbial load on the produce surface. Although current process control and validation tools effectively predict sanitizer concentrations in wash water, they have significant limitations in assessing sanitizer effectiveness for reducing microbial counts on produce surfaces. These challenges highlight the urgent need to improve the validation of sanitation processes, especially considering the presence of dynamic organic contaminants and complex surface topographies. This study aims to provide the fresh produce industry with a novel, reliable, and highly accurate method for validating the sanitation efficacy on the produce surface. Our results demonstrate the feasibility of using a food-grade, catalase (CAT)-immobilized biomimetic leaf in combination with vibrational spectroscopy and machine learning to predict microbial inactivation on microgreen surfaces. This was tested using two sanitizers: sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2). The developed CAT-immobilized leaf-replicated PDMS (CAT@L-PDMS) effectively mimics the microscale topographies and bacterial distribution on the leaf surface. Alterations in the FTIR spectra of CAT@L-PDMS, following simulated sanitation processes, indicate chemical changes due to CAT oxidation induced by NaClO or H2O2 treatments, facilitating the subsequent machine learning modeling. Among the five algorithms tested, the competitive adaptive reweighted sampling partial least squares discriminant analysis (CARS-PLSDA) algorithm was the most effective for classifying the inactivation efficacy of E. coli on microgreen leaf surfaces. It predicted bacterial reduction on microgreen surfaces with 100% accuracy in both training and prediction sets for NaClO, and 95% in the training set and 86% in the prediction set for H2O2. This approach can improve the validation of fresh produce sanitation processes and pave the way for future research.


Assuntos
Desinfetantes , Desinfetantes/farmacologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Escherichia coli , Peróxido de Hidrogênio/análise , Saneamento/métodos , Catalase , Biomimética , Manipulação de Alimentos/métodos , Bactérias
9.
Front Microbiol ; 15: 1307610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348192

RESUMO

Introduction: This study aimed to determine the prevalence and virulome of Listeria in fresh produce distributed in urban communities. Methods: A total of 432 fresh produce samples were collected from farmer's markets in Michigan and West Virginia, USA, resulting in 109 pooled samples. Listeria spp. were isolated and L. monocytogenes was subjected to genoserogrouping by PCR and genotyping by pulsed-field gel electrophoresis (PFGE). Multi-locus sequence typing (MLST) and core-genome multi-locus sequence typing (cgMLST) were conducted for clonal identification. Results: Forty-eight of 109 samples (44.0%) were contaminated with Listeria spp. L. monocytogenes serotype 1/2a and 4b were recovered from radishes, potatoes, and romaine lettuce. Four clonal complexes (CC) were identified and included hypervirulent CC1 (ST1) and CC4 (ST219) of lineage I as well as CC7 (ST7) and CC11 (ST451) of lineage II. Clones CC4 and CC7 were present in the same romaine lettuce sample. CC1 carried Listeria pathogenicity island LIPI-1 and LIPI-3 whereas CC4 contained LIPI-1, LIPI-3, and LIPI-4. CC7 and CC11 had LIPI-1 only. Discussion: Due to previous implication in outbreaks, L. monocytogenes hypervirulent clones in fresh produce pose a public health concern in urban communities.

10.
ACS Appl Bio Mater ; 7(3): 1842-1851, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416807

RESUMO

The growing concerns regarding foodborne illnesses related to fresh produce accentuate the necessity for innovative material solutions, particularly on surfaces that come into close contact with foods. This study introduces a sustainable, efficient, and removable antimicrobial and antifouling coating ideally suited for hydrophobic food-contact surfaces such as low-density polyethylene (LDPE). Developed through a crosslinking reaction involving tannic acid, gelatin, and soy protein hydrolysate, these coatings exhibit proper stability in aqueous washing solutions and effectively combat bacterial contamination and prevent biofilm formation. The unique surface architecture promotes the formation of halamine structures, enhancing antimicrobial efficacy with a rapid contact killing effect and reducing microbial contamination by up to 5 log10 cfu·cm-2 against both Escherichia coli (Gram-negative) and Listeria innocua (Gram-positive). Notably, the coatings are designed for at least five recharging cycles under mild conditions (pH6, 20 ppm free active chlorine) and can be easily removed with hot water or steam to refresh the depositions. This removal process not only conveniently aligns with existing sanitation protocols in the fresh produce industry but also facilitates the complete eradication of potential developed biofilms, outperforming uncoated LDPE coupons. Overall, these coatings represent sustainable, cost-effective, and practical advancements in food safety and are promising candidates for widespread adoption in food processing environments.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Polifenóis , Polietileno , Anti-Infecciosos/farmacologia , Povidona , Escherichia coli
11.
Microbiol Spectr ; 12(4): e0376723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363139

RESUMO

The varied choice of bacterial strain, plant cultivar, and method used to inoculate, retrieve, and enumerate Escherichia coli O157:H7 from live plants could affect comparability among studies evaluating lettuce-enterobacterial interactions. Cultivar, bacterial strain, incubation time, leaf side inoculated, and sample processing method were assessed for their influence in recovering and quantifying E. coli O157:H7 from live Romaine lettuce. Cultivar exerted the strongest effect on E. coli O157:H7 counts, which held up even when cultivar was considered in interactions with other factors. Recovery from the popularly grown green Romaine "Rio Bravo" was higher than from the red variety "Outredgeous." Other modulating variables were incubation time, strain, and leaf side inoculated. Sample processing method was not significant. Incubation for 24 hours post-lettuce inoculation yielded greater counts than 48 hours, but was affected by lettuce cultivar, bacterial strain, and leaf side inoculated. Higher counts obtained for strain EDL933 compared to a lettuce outbreak strain 2705C emphasized the importance of selecting relevant strains for the system being studied. Inoculating the abaxial side of leaves gave higher counts than adaxial surface inoculation, although this factor interacted with strain and incubation period. Our findings highlight the importance of studying interactions between appropriate bacterial strains and plant cultivars for more relevant research results, and of standardizing inoculation and incubation procedures. The strong effect of cultivar exerted on the E. coli O157:H7-lettuce association supports the need to start reporting cultivar information for illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk.IMPORTANCEThe contamination of Romaine lettuce with Escherichia coli O157:H7 has been linked to multiple foodborne disease outbreaks, but variability in the methods used to evaluate E. coli O157:H7 association with live lettuce plants complicates the comparability of different studies. In this study, various experimental variables and sample processing methods for recovering and quantifying E. coli O157:H7 from live Romaine lettuce were assessed. Cultivar was found to exert the strongest influence on E. coli O157:H7 retrieval from lettuce. Other modulating factors were bacterial incubation time on plants, strain, and leaf side inoculated, while sample processing method had no impact. Our findings highlight the importance of selecting relevant cultivars and strains, and of standardizing inoculation and incubation procedures, in these types of assessments. Moreover, results support the need to start reporting cultivars implicated in foodborne illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk.


Assuntos
Escherichia coli O157 , Microbiologia de Alimentos , Alface , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise
12.
J Food Prot ; 87(3): 100228, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246525

RESUMO

There has been limited research and understanding of the water quality in developing countries. Fresh produce consumed raw is nutrient-dense but is more susceptible to causing foodborne illness when contaminated water is used in production and consumption. There have been increasing reported incidences of foodborne outbreaks in Nepal linked to fresh produce contamination. However, water used in washing fresh produce by consumers and water used by growers or vendors is rarely tested. This research examines the source water used by consumers and growers in fresh produce systems in Nepal. To examine Escherichia coli (E. coli) detection as an indicator of contamination risk in water, we selected five major metropolitan cities for consumer households and ten districts representing commercial growers of vegetable growing areas of all seven provinces of Nepal. Altogether, we collected 394 water samples from randomly selected individual households: 156 from consumer households and 238 from growers or vendors. Results suggest that 59% of the water used in fresh produce systems is contaminated with E. coli in Nepal. On the water source used by consumers to wash fresh produce before consumption, we found that the dominant sources are the stored water in tanks or containers (46%) and municipal or communal supply water (39%)-which have E. coli prevalence rate of 66% and 57%, respectively. On the dominant sources of water used in fresh produce by growers or vendors, we found up to 88% of E. coli prevalence in the water they use. We also discussed the location or regional differences in contamination risks. This nationally represented study has implications for intervention policies and programs for safer food production and consumption practices in countries like Nepal where food safety is an emerging priority.


Assuntos
Escherichia coli , Contaminação de Alimentos , Contaminação de Alimentos/análise , Nepal , Inocuidade dos Alimentos , Verduras , Microbiologia de Alimentos
13.
Food Sci Biotechnol ; 33(1): 219-229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186617

RESUMO

This study analyzed the virulence, growth characteristics, and cytotoxicity of Bacillus cereus strains isolated from fresh produce, including romaine lettuce, sesame leaf, tomato, and cucumber grown by different methods. Polymerase chain reaction (PCR) was used to assess the toxigenic potential, and the cytotoxicity of B. cereus was estimated using cell-free supernatant in HEp-2 cells. The study found that hblD was the predominant diarrheal enterotoxin in the 59 isolated B. cereus strains, followed by nheB and hblC. The optimal temperatures for growth ranged from 42 to 44 °C, with the highest growth rates and shortest lag times. Cytotoxicity varied greatly depending on abiotic factors, including NaCl, pH, and medium, and was not always correlated with cell population. The study highlights the importance of establishing control measures to prevent B. cereus intoxication in fresh vegetables. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01330-0.

14.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257041

RESUMO

Food bioactive packaging has received increasing attention from consumers and the food industry for its potential to reduce food waste and environmental issues. Several materials can be used to produce edible films/coats; however, bio-based, cost-effective, and sustainable coatings have gained a high reputation these days. For instance, Aloe vera gel (AV) is a promising bio-based material for edible coatings and films; therefore, the present study aimed to investigate the film-forming abilities of AV and Chitosan (CH) combination as a potential active food packaging material. The physicochemical and mechanical characteristics of formed films of various combinations were prepared at different concentrations, i.e., CH (0.5% w/v), AV (100%), CH:AV (75:25), and CH:AV (60:40). The results showed significant differences among all the prepared edible films wherein these differences were mainly on account of incorporating AV gel. The rheological and antioxidant properties of the formulations improved with the inclusion of AV gel. The films composed of CH:AV (60:40) positively affected the water solubility, thermal properties, and water vapour permeability of the edible films. The X-ray Diffraction (XRD) and Scanning electron microscopy (SEM) results showed that the films composed of CH:AV, (60:40) were amorphous and had smooth morphology. Further, the edible film solutions were applied to fresh figs (Ficus carica) to investigate their role in preserving fruits during storage. A significant reduction in microbial growth was found in coated fruits after 28 days of cold storage. The films composed of CH and AV showed overall improved results compared to the CH (0.5%, w/v). Therefore, the used formulations (CH:AV, 60:40) can form a sustainable film that has the potential to be utilized for fresh product preservation to maintain its quality and shelf life.

15.
J Food Sci ; 89(1): 150-173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051016

RESUMO

We assessed the efficacy of oversampling techniques to enhance machine learning model performance in predicting Escherichia coli MG1655 presence in spinach wash water. Three oversampling methods were applied to balance two datasets, forming the basis for training random forest (RF), support vector machines (SVMs), and binomial logistic regression (BLR) models. Data underwent method-specific centering and standardization, with outliers replaced by feature-specific means in training datasets. Testing occurred without these preprocessing steps. Model hyperparameters were optimized using a subset of testing data via 10-fold cross-validation. Models were trained on full datasets and tested on newly acquired spinach wash water samples. Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling approach (ADASYN) achieved strong results, with SMOTE RF reaching an accuracy of 90.0%, sensitivity of 93.8%, specificity of 87.5%, and an area under the curve (AUC) of 98.2% (without data preprocessing) and ADASYN achieving 86.55% accuracy, 87.5% sensitivity, 83.3% specificity, and a 92.4% AUC. SMOTE and ADASYN significantly improved (p < 0.05) SVM and RF models, compared to their non-oversampled counterparts without preprocessing. Data preprocessing had a mixed impact, improving (p < 0.05) the accuracy and specificity of the BLR model but decreasing the accuracy and specificity (p < 0.05) of the SVM and RF models. The most influential physiochemical feature for E. coli detection in wash water was water conductivity, ranging from 7.9 to 196.2 µS. Following closely was water turbidity, ranging from 2.97 to 72.35 NTU within this study.


Assuntos
Escherichia coli , Spinacia oleracea , Aprendizado de Máquina , Máquina de Vetores de Suporte
16.
Plant Dis ; 108(1): 41-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37592429

RESUMO

Sweet basil (Ocimum basilicum) is an important spice herb grown in Israel for local markets and export. The crop is used as a fresh culinary herb or spice, and the essential oils are used in cosmetics and food flavorings. Due to increased demand, the production area of basil has increased in Israel. Postharvest losses due to fungal disease are a major economic concern for growers. In the summer of 2019, a leaf spot was observed in postharvest shipments of sweet basil destined for Europe; in late winter of 2022, leaf spots were observed on greenhouse-grown sweet basil. Fungal isolates from infected leaves were characterized by morphology in culture as Alternaria spp. PCR amplification of the Alternaria major allergen Alt a1, ITS, and gdp gene regions of the recovered isolates confirmed the presence of A. alternata, a common pathogen of numerous herbs and spice plants. In vitro growth tests demonstrated that 25°C was the optimum temperature for growth of the isolates. The isolates were tested for pathogenicity and found to infect a commonly grown cultivar of basil, cultivar Eli (previously cultivar Perrie). Foliar symptoms in pathogenicity tests were identical to those observed in commercial shipments and in the field, which completed Koch's postulates. Control of the nascent disease by applying fungicides to the plants may be necessary to reduce postharvest losses.


Assuntos
Alternaria , Ocimum basilicum , Israel , Alternaria/genética , Europa (Continente)
17.
J Environ Manage ; 351: 119641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064988

RESUMO

Foodborne outbreaks caused by fecal contamination of fresh produce represent a serious concern to public health and the economy. As the consumption of fresh produce increases, public health officials and organizations have pushed for improvements in food safety procedures and environmental assessments to reduce the risk of contamination. Visual inspections and the establishment of "buffer zones" between animal feeding operations and producing fields are the current best practices for environmental assessments. However, a generalized distance guideline and visual inspections may not be enough to account for all environmental risk variables. Here, we report a baseline measurement surveying the background Bacteroidales concentration, as a quantitative fecal contamination indicator, in California's Salinas Valley. We collected a total of 1632 samples from two romaine lettuce commercial fields at the time of harvesting through two seasons in a year. The quantification of Bacteroidales concentration was performed using qPCR, revealing a notably low concentration (0-2.00 copies/cm2) in the commercial fields. To further enhance the applicability of our findings, we developed a user-friendly method for real-world fecal contamination risk assessment that seamlessly integrates with industry practices. Through the generation of heatmaps that visually illustrate varying risk levels across fields, this approach can identify site-specific risks and offer fresh produce stakeholders a more comprehensive understanding of their land. We anticipate this work can encourage the use of Bacteroidales in the fresh produce industry to monitor fecal contamination and prevent future foodborne outbreaks.


Assuntos
Artrópodes , Contaminação de Alimentos , Animais , Contaminação de Alimentos/análise , Fezes , Bacteroidetes
18.
Ital J Food Saf ; 12(4): 11447, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38116372

RESUMO

Norovirus (NOV) and hepatitis A virus (HAV) are human enteric viruses of major concern worldwide. Salad vegetables and molluscan shellfish are highly susceptible to contamination by NOV and HAV and can pose a health threat when consumed raw. The objective of this study was to determine the occurrence of NOV and HAV in lettuce, watercress, tomatoes, and oysters using the enzyme-linked immunosorbent assay and assess the health risks associated with the consumption of these commodities by semiquantitative risk assessment. The occurrence of NOV in vegetables ranked in the following decreasing order: lettuce (36%) > watercress (16%) > tomatoes (4%). However, HAV was more frequently detected in watercress (56%), compared to lettuce or tomatoes (12%). Additionally, NOV was detected in oysters (60%). The risk assessment exercise pointed to a medium-risk score of contracting a foodborne illness of viral origin for consumers eating fresh watercress or oysters. Future research will ascertain the presence of these enteric viruses in a broader range of food commodities.

19.
Heliyon ; 9(10): e20834, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916128

RESUMO

Packaging bags made of polyethylene (PE) were sonochemically coated with edible antibacterial nanoparticles of chitosan (CS). In this work, the nanoparticles (NPs) were deposited on the surface of PE packaging bags by applying sonication waves on an acetic solution of chitosan. The characterization of CS NPs and PE bags was conducted by physicochemical techniques. The results showed that the coated bags had longer freshness than the uncoated ones. Furthermore, the characterization of cucumber, mushroom, and garlic placed into coated and uncoated PE bags was conducted by monitoring various parameters such as mass loss, total soluble solids, pH, and visual inspection. The study revealed that the PE bags coated with CS NPs showed a noticeable result in extending the shelf life of fresh produce. Finally, the antibacterial activity of PE bags was evaluated against various bacterial species. Hence, the PE bags coated with CS NPs could be a promising candidate for elongating the shelf life of packaged fresh produce.

20.
Compr Rev Food Sci Food Saf ; 22(6): 4537-4572, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942966

RESUMO

Collation of the current scope of literature related to population dynamics (i.e., growth, die-off, survival) of foodborne pathogens on fresh produce can aid in informing future research directions and help stakeholders identify relevant research literature. A scoping review was conducted to gather and synthesize literature that investigates population dynamics of pathogenic and non-pathogenic Listeria spp., Salmonella spp., and Escherichia coli on whole unprocessed fresh produce (defined as produce not having undergone chopping, cutting, homogenization, irradiation, or pasteurization). Literature sources were identified using an exhaustive search of research and industry reports published prior to September 23, 2021, followed by screening for relevance based on strict, a priori eligibility criteria. A total of 277 studies that met all eligibility criteria were subjected to an in-depth qualitative review of various factors (e.g., produce commodities, study settings, inoculation methodologies) that affect population dynamics. Included studies represent investigations of population dynamics on produce before (i.e., pre-harvest; n = 143) and after (i.e., post-harvest; n = 144) harvest. Several knowledge gaps were identified, including the limited representation of (i) pre-harvest studies that investigated population dynamics of Listeria spp. on produce (n = 13, 9% of pre-harvest studies), (ii) pre-harvest studies that were carried out on non-sprouts produce types grown using hydroponic cultivation practices (n = 7, 5% of pre-harvest studies), and (iii) post-harvest studies that reported the relative humidity conditions under which experiments were carried out (n = 56, 39% of post-harvest studies). These and other knowledge gaps summarized in this scoping review represent areas of research that can be investigated in future studies.


Assuntos
Listeria , Escherichia coli , Microbiologia de Alimentos , Salmonella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...